Лабораторная работа № 2.
Алгебра логики

Время выполнения

4 часа

Цель работы

Изучить основы алгебры логики.

Задачи лабораторной работы

В результате прохождения занятия студент должен: 

1. знать:

    • определения основных понятий (простое и сложное высказывания, логические операции, логические выражения, логическая функция);
    • порядок выполнения логических операций;
    • алгоритм построения таблиц истинности;
    • схемы базовых логических элементов;
    • законы логики и правила преобразования логических выражений;

        2. уметь:

    • применять загоны логики для упрощения логических выражений;
    • строить таблицы истинности;
    • строить логические схемы сложных выражений.

Общие теоретические сведения

Основные понятия алгебры логики

Логической основой компьютера является алгебра логики, которая рассматривает логические операции над высказываниями.

Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Пример. «3 – простое число» является высказыванием, поскольку оно истинно.
Не всякое предложение является логическим высказыванием.

Пример. предложение «Давайте пойдем в кино» не является высказыванием. Вопросительные и побудительные предложения высказываниями не являются.

Высказывательная форма – это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Пример. «x+2>5» - высказывательная форма, которая при x>3 является истинной, иначе ложной. 
Алгебра логики рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным. Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Высказывания, образованные из других высказываний с помощью логических связок, называются составными (сложными). Высказывания, которые не являются составными, называются элементарными (простыми).

Пример. высказывание «Число 6 делится на 2» - простое высказывание. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - составное высказывание, образованное из двух простых с помощью логической связки «и».
Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят.
Чтобы обращаться к логическим высказываниям, им назначают имена.

Пример. Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая связка, А, В – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0».

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1).
Таблица 1. Основные логические операции
 Обозначение операции  Читается  Название операции  Альтернативные обозначения
 ¬  НЕ  Отрицание (инверсия)  Черта сверху
 И  Конъюнкция (логическое умножение)  ∙ &
 
 ИЛИ  Дизъюнкция (логическое сложение)  +
 → Если … то   Импликация
 
 ↔  Тогда и только тогда  Эквиваленция  ~
 XOR  Либо …либо  Исключающее ИЛИ (сложение по модулю 2)
 

НЕ
Операция, выражаемая словом «не», называется отрицанием и обозначается чертой над высказыванием (или знаком ¬). Высказывание ¬А истинно, когда A ложно, и ложно, когда A истинно.

Пример. Пусть А=«Сегодня пасмурно», тогда ¬А=«Сегодня не пасмурно».

И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « • » (может также обозначаться знаками   или &). Высказывание А • В истинно тогда и только тогда, когда оба высказывания А и В истинны.

Пример. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - истинно, а высказывание «Число 6 делится на 2, и число 6 больше 10» - ложно.

ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком 
(или плюсом). Высказывание АВ ложно тогда и только тогда, когда оба высказывания А и В ложны.

Пример: Высказывание «Число 6 делится на 2 или число 6 больше 10» - истинно, а высказывание «Число 6 делится на 5 или число 6 больше 10» - ложно.

ЕСЛИ … ТО Операция, выражаемая связками «если …, то», «из … следует», «... влечет …», называется импликацией (лат. implico – тесно связаны) и обозначается знаком → . Высказывание А→В ложно тогда и только тогда, когда А истинно, а В ложно.

Пример. Высказывание «если студент сдал все экзамены на «отлично», то он получит стипендию». Очевидно, эту импликацию следует признать ложной лишь в том случае, когда студент сдал на «отлично» все экзамены, но стипендии не получил. В остальных случаях, когда не все экзамены сданы на «отлично» и стипендия получена (например, в силу того, что студент проживает в малообеспеченной семье) либо когда экзамены вообще не сданы и о стипендии не может быть и речи, импликацию можно признать истинной.

РАВНОСИЛЬНО Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «... равносильно …», называется эквиваленцией или двойной импликацией и обозначается знаком ↔ или ~ . Высказывание А↔В истинно тогда и только тогда, когда значения А и В совпадают.
Пример: Высказывание «Число является четным тогда и только тогда, когда оно делится без остатка на 2» является истинным, а высказывание «Число является нечетным тогда и только тогда, когда оно делится без остатка на 2» - ложно.

ЛИБО … ЛИБО Операция, выражаемая связками «Либо … либо», называется исключающее ИЛИ или сложением по модулю 2 и обозначается XOR или . Высказывание АВ истинно тогда и только тогда, когда значения А и В не совпадают.

Пример. Высказывание «Число 6 либо нечетно либо делится без остатка на 2» является истинным, а высказывание «Либо число 6 четно либо число 6 делится на 3» – ложно, так как истинны оба высказывания входящие в него.

Замечание. Импликацию можно выразить через дизъюнкцию и отрицание:
.
Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:
.
Исключающее ИЛИ можно выразить через отрицание, дизъюнкцию и конъюнкцию:
.

Вывод. Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.
Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания («не»), затем конъюнкция («и»), после конъюнкции – дизъюнкция («или») и исключающего или и в последнюю очередь – импликация и эквиваленция.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Логическая формула - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).

Логическая функция - это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1.

Пример – логическая функция двух переменных A и B.

Значения логической функции для разных сочетаний значений входных переменных – или, как это иначе называют, наборов входных переменных – обычно задаются специальной таблицей. Такая таблица называется таблицей истинности.

Приведем таблицу истинности основных логических операций (табл. 2)
Таблица 2
 A  B            
 1  1  0  1  1  1  1  0
 1  0  0  0  1  0  0  1
 0  1  1  0  1  1  0  1
 0  0  1  0  0  1  1  0

Опираясь на данные таблицы истинности основных логических операций можно составлять таблицы истинности для более сложных формул.
Алгоритм построения таблиц истинности для сложных выражений:

1. Определить количество строк: 
  • количество строк = 2n + строка для заголовка, 
  • n - количество простых высказываний. 
2. Определить количество столбцов: 
  • количество столбцов = количество переменных + количество логических операций;
  • определить количество переменных (простых выражений); 
  • определить количество логических операций и последовательность их выполнения.
Пример 1. Составить таблицу истинности для формулы И–НЕ, которую можно записать так:.

1. Определить количество строк: 
    На входе два простых высказывания: А и В, поэтому n=2 и количество строк =22+1=5.

2. Определить количество столбцов:
    Выражение состоит из двух простых выражений (A и B) и двух логических операций (1 инверсия, 1 конъюнкция), т.е. количество столбцов таблицы истинности = 4.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 3).

Таблица 3. Таблица истинности для логической операции
 A  B    
 1  1  1  0
 1  0  0  1
 0  1  0  1
 0  0  0  1

Подобным образом можно составить таблицу истинности для формулы ИЛИ–НЕ, которую можно записать так:  
.
Таблица 4. Таблица истинности для логической операции
 A  B    
 1  1  1  0
 1  0  1  0
 0  1  1  0
 0  0  0  1

Примечание:
И–НЕ называют также «штрих Шеффера» (обозначают | ) или «антиконъюнкция»; ИЛИ–НЕ называют также «стрелка Пирса» (обозначают ↓) или «антидизъюнкция».

Пример 2.
Составить таблицу истинности логического выражения .

Решение:

1. Определить количество строк: 
    На входе два простых высказывания: А и В, поэтому n=2 и количество строк=22+1= 5.

2. Определить количество столбцов: 
    Выражение состоит из двух простых выражений (A и B) и пяти логических операций (2 инверсии, 2 конъюнкции, 1 дизъюнкция), т.е. количество столбцов таблицы истинности = 7.
Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 5).

Таблица 5. Таблица истинности для логической операции
 A  B          C
 1  1  0  0  0  0  0
 1  0  0  1  0  1  1
 0  1  1  0  1  0  1
 0  0  1  1  0  0  0

Логические формулы можно также представлять с помощью языка логических схем. 
Существует три базовых логических элемента, которые реализуют три основные логические операции:
  • логический элемент «И» – логическое умножение – конъюнктор;
  • логический элемент «ИЛИ» – логическое сложение – дизъюнктор;
  • логический элемент «НЕ» – инверсию – инвертор.

Поскольку любая логическая операция может быть представлена в виде комбинации трех основных, любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из “кирпичиков”.

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс – логический смысл сигнала – 1, нет импульса – 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции.

Преобразование сигнала логическим элементом задается таблицей состояний, которая фактически является таблицей истинности, соответствующей логической функции, только представлена в форме логических схем. В такой форме удобно изображать цепочки логических операций и производить их вычисления.

Алгоритм построения логических схем.

  1. Определить число логических переменных.
  2. Определить количество логических операций и их порядок.
  3. Изобразить для каждой логической операции соответствующий ей логический элемент.
  4. Соединить логические элементы в порядке выполнения логических операций.
Пример. По заданной логической функции  построить логическую схему.

Решение.
  1. Число логических переменных = 2 (A и B).
  2. Количество операций = 5 (2 инверсии, 2 конъюнкции, 1 дизъюнкция). Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.
  3. Схема будет содержать 2 инвертора, 2 конъюнктора и 1 дизъюнктор.
  4. Построение надо начинать с логической операции, которая должна выполняться последней. В данном случае такой операцией является логическое сложение, следовательно, на выходе должен быть дизъюнктор. На него сигналы подаются с двух конъюнкторов, на которые, в свою очередь, подаются один входной сигнал нормальный и один инвертированный (с инверторов).

 

Видеоурок по выполнению заданий лабораторной работы

Comments